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Real-Time Pavement Damage Detection With
Damage Shape Adaptation

Yingchao Zhang and Cheng Liu

Abstract— Intelligent detection of pavement damage is crucial
to road maintenance. Timely identification of cracks and potholes
helps prolong the road service life. Current detection models
fail to balance accuracy and speed. In this study, we propose
a fast damage detection algorithm named FPDDN to achieve
real-time and high-accuracy pavement damage detection. FPDDN
integrates the deformable transformer, D2f block, and SFB
module to predict pavement damage of different sizes in multiple
branches. The deformable transformer allows the FPDDN to
exhibit adaptability to geometric variations in road defects,
thereby improving the detection accuracy of irregular defects
such as cracks. D2f block is mainly used to lightweight the
network and increase the inference speed. The SFB module
can significantly decrease the loss of information during
downsampling of small-sized objects. This integration enhances
the model’s ability to extract global damage features, reduces
the loss of information on small-scale defects, and improves the
synergy between deep and shallow feature layers. The model’s
performance was evaluated using the RDD2022 dataset, focusing
on inference speed and detection accuracy. When compared
to state-of-the-art models such as YOLO v8, FPDDN has a
parameter count that is only one-fifth of that of YOLO v8x, yet it
surpasses YOLO v8x in detection accuracy. The FPDDN achieved
an F1 score of 0.601 and a mAP50 of 0.610 on the RDD2022
dataset, outperforming the compared models. Additionally, the
algorithm achieved a balance between accuracy and speed with
an inference speed of 1.8ms for pavement damage detection.

Index Terms— Non-destructive testing, transformer, damage
detection, real-time detection.

I. INTRODUCTION

TODAY, every country has a dense road network, which is
extremely important for each country’s economy, society,

and defense. Efficient highway transportation can reduce
the cost of transportation time for goods and significantly
improve logistics efficiency. However, with the construction
of highways in various countries, more and more roads begin
to suffer from pavement damage, such as cracks, potholes,
etc., which will affect driving comfort and may lead to traffic
accidents. Therefore, it is essential to repair the damage at the
early stage of its development, which will also improve the
service life of the road.
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There are a number of methods available for pavement
damage inspection. Although manual detection is highly
accurate, it requires traffic closures, which greatly impacts
traffic efficiency. Multi-functional highway damage detection
vehicles can detect pavement, subgrade, and other damage
with high precision. However, the cost of the inspection
vehicles is expensive, and they are not applicable to the
frequent inspection of highway networks. Therefore, many
scholars have developed intelligent detection algorithms [1],
[2]. Current intelligent detection algorithms include three main
categories: vibration-based sensors, 3D sensors, and cameras.

A. Detection Algorithms Based on Vibration Sensors

The presence of cracks and potholes on the road surface
can cause discomfort to the passengers, and we can determine
the quality of the road surface according to the degree of
discomfort [3]. Acceleration sensors, gyroscopes, and other
devices were used to detect pavement unevenness [4], [5].
These sensors can capture vertical acceleration variations
during driving with high precision. The higher the vibration
amplitude, the worse the pavement. However, this method can
only capture the area where the wheels pass and is ineffective
for areas where the wheels do not pass. Due to its limited
scope of application, it is rarely used in actual detection tasks.

B. Detection Algorithms Based on 3D Sensors

3D sensors generally have higher accuracy when detecting
pavement damage. Wang et al. [6] proposed a new approach
for calculating the mean texture depth of pavement based
on the 3D laser scanning sensors. This technique can also
be used for damage detection. Reference [7] verified the
feasibility of 3D sensors for detecting pavement distresses.
Zhang et al. [8] applied the pavement condition detected
by the 3D laser scanner and proposed the minimum cost
spanning tree algorithm to improve the accuracy of crack
detection to 98%. 3D sensors are highly accurate and
not influenced by environmental conditions. However, the
hardware and technical requirements for 3D sensor-based
detection algorithms are more challenging. They are less
suitable for lightweight detection devices.

C. Detection Algorithms Based on Cameras

With the development of deep learning, convolutional neural
networks (CNN) and Transformer structures have become
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Fig. 1. Examples of different tasks.

extensively utilized in the domain of non-destructive damage
detection. There methods can be divided into three main
categories: damage classification [9], damage detection [10],
and damage segmentation [11]. Fig.1 displays the three tasks.

AlexNet [12], and GoogleNet [13] were used by [14] to
complete the classification of damage. Damage classification
determines the presence of damage in the image with up
to 99% accuracy in detecting pavement damage [9]. Merely
determining the presence of defects in the image lacks
practical application value, and we need to know the actual
location of the damage in the image.

The object detection algorithm can detect the type and
location of the damage in the image. Global Road Damage
Detection Challenge (GRDDC) [15] was held in 2020 to
search for high-precision models for pavement damage.
This competition only took detection accuracy as evaluation
metrics. Pham et al. [16] replaced the backbone of Faster
RCNN with ResNet101, resulting in an F1-score of 0.51.
The YOLO v4 model and the ensemble learning approach
were used by [17] to improve the detection metric to 0.628.
Using the state-of-the-art YOLO detection model, [18] used
ensemble learning and data augmentation to improve the F1
score to 0.67. This result also won the competition. A lot of
great models emerged from this challenge. In addition, some
scholars employed the attention mechanism to improve the
model accuracy. A multi-level attention mechanism [10] was
proposed to enhance the ability to detect pavement damage
in YOLO v3 [19]. In addition to cracks, potholes and other
defects, high-precision detection of white line blur (D44)
is also being carried out by [20]. Although these damage
detection algorithms have high accuracy, they are insufficient
in fast detection.

The damage segmentation is a more precise way to
detect different types of damage, which can distinguish
pixel classes [21]. Chen et al. [22] proposed a pixel-by-
pixel trainable PCSN network to perform crack segmentation.
Segmentation networks were applied to multiple injury
categories immediately afterward [23]. However, the detection
speed of the segmentation model is not fast enough, and the
edge information of the damage is not processed well enough.

The above studies focused on how to improve the detection
accuracy of the model, but neglected the importance of
inference speed. Although the requirement for inference speed
is not critical in some offline applications, increasing inference
speed is still important for improving overall operational
efficiency, minimizing costs, enhancing system scalability, and
improving the user experience. Therefore, focusing on both

accuracy and inference speed is important to improve the
overall operational efficiency and user experience. Zhang et al.
[24] introduced the convolution layer with a small kernel
size in the segmentation network to reduce the parameters.
To reduce the parameters of models based on the transformer,
[25] proposed a multilayer cross-fertilization strategy that
used depthwise separable convolution [26]. This network
outperforms YOLO v4-tiny in terms of detection accuracy
and inference speed. Liu et al. [27] used YOLO v5 [28]
combined with Swin Transformer Block [29] to enhance the
detection accuracy of pavement distress without significantly
increasing the number of parameters. While these algorithms
are superior in inference speed, they have lower accuracy and
do not achieve a good balance between accuracy and speed.

Currently, there are several existing models for the detection
or segmentation of pavement damage. CNN-based models
are characterized by the limited number of parameters and
fast detection speed but low detection accuracy [30], while
Transformer is known for higher detection accuracy but slow
detection speed [29]. Therefore, this study aims to propose
a pavement damage detection model that effectively balances
both accuracy and speed, considering the strengths of CNN
and Transformer models. The contributions can be mainly
summarized as follows:

1) A lightweight network for pavement damage detection
called Fast Pavement Damage Detection Network
(FPDDN) was proposed by us. This model focuses on
irregularly shaped and small-scale pavement damage.
It can adapt to irregularly shaped cracks and reduce
the loss of information in the downsampling process for
small-size targets. The structure of FPDDN can be seen
in Fig.2.

2) Our proposed SFB module effectively magnifies small
target weights in feature maps through subtraction and
merging operations between feature maps.

3) We introduced vision transformer models with
deformable attention into our model, which exhibits
adaptability to geometric variations in road defects.

4) The D2f module based on depthwise separable convolu-
tion is proposed to lightweight the network and increase
the inference speed.

The sections are divided as follows: Section I reviewed
the research on detection accuracy and speed, Section II
introduced currently commonly used pavement damage
datasets, and Section III proposed our own model. Section IV
introduced the experimental design, evaluation metrics, and
results analysis. Finally, this paper was summarized.

II. PAVEMENT DATASET

Public datasets for pavement distress include RDD2020
[31] and UNFSI [32] for cracks classification and location,
as well as Crack500 [33] and CrackForest [34] for damage
segmentation. However, these databases have some limitations.
For example, databases used for crack segmentation typically
contain only a few hundred images, making it difficult to
use them in practical inspections, even if they achieve high
accuracy during training processes. These images rarely suffer
from external noise when captured, and the image quality is
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Fig. 2. The structure of FPDDN.

Fig. 3. Number of each category.

better. Therefore, we used the RDD2022 database proposed
by Arya et al. [35] in 2022 to use the trained model for
field detection. The RDD2022 database contains pavement
damage images from six countries, including Japan, India,
China, the United States, the Czech Republic, and Norway,
and including transverse cracks (D10), longitudinal cracks
(D00), alligator cracks (D20), and potholes (D40). Fig.3 and
Fig.4 show the number and samples of each category of the
RDD2022 database we collected.

We restricted the size of the input image to 640×640. If the
area of the ground truth for the disease measures less than
322 pixel2, it is classified as a small target. Areas exceeding
962 pixel2 are considered large targets, while all other sizes are
categorized as medium targets. The results of the division are
shown in Fig. 5. The figure illustrates that RDD2022 contains
a greater number of smaller targets, which can significantly
affect the accuracy of the detection model.

III. PROPOSED NETWORK

A. Overall Model of FPDDN

To utilize the lightweight property of the convolutional
neural network and the high accuracy of the self-attention

Fig. 4. Samples of different categories.

mechanism, we proposed the FPDDN model for rapid
detection of pavement defects, as shown in Fig.2. FPDDN
consists of a backbone, a feature fusion network, and three
detection heads, similar to the YOLO structure [30].

We use five convolution modules (Conv) and four D2f
modules in the backbone. The Conv module comprises a
convolution layer, a normalization layer, and an activation
function layer. The convolution kernel size was set to 3×3 in
the Conv module, and the stride was 2. After the feature
maps pass through the convolution layer, their width and
height become 1/2 of the original size. The mathematical
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Fig. 5. Classification of defects size.

Fig. 6. D2f module.

Fig. 7. SPPF module.

expressions for the normalization and activation function
layers are presented in Eq.2 and Eq.3. Here, the SiLU function
was used in the FPDDN. We proposed D2f based on the
C2f module used in the YOLO v8 [30]. The convolutional
layers in the C2f module were replaced by depthwise separable
convolutions (DSC) [26] to further decrease the number of
model parameters. The D2f module we adopted is shown in
Fig.6. The DBS module consists of DSC, batch normalization
(BN), and SiLU activation functions. Two DBS modules
are adopted in the Bottleneck module, and the residual
structure is used to prevent vanishing gradients and exploding
gradients. In the D2f module, the DBS module processes
the input feature map and splits it into two feature maps
along the channel direction, one of which is input into the
Bottleneck module. The three resulting feature maps are
concatenated along the channel direction and subsequently
processed through the DBS module. In addition, the SPPF
module in the backbone is the same as that of YOLO v8,
which can be seen in Fig.7.

(x ∗ h)(i, j) =

∑
c

∑
m

∑
n

xc(m, n) · hc(i − m, j − n) (1)

y =
x − E (x)√

Var (x) + e−5
(2)

y =
x

1 + e−x (3)

where h denotes the convolution kernel, x is the input feature
map, c indicates the channel dimension. The variables m and
n correspond to the traversal of the entire feature map along
the height and width dimensions, respectively. The tuple (i , j)
specifies the position of the output feature while E and Var (x)

represent the mean and variance of the input feature map,
respectively.

In the feature fusion stage, Feature Pyramid Network (FPN)
[36] and Path Aggregation Network (PAN) [37] are used by
FPDDN. In the fusion of shallow and deep feature maps, the
FPDDN model employs the subtractive fusion block (SFB)
module proposed by us to capture the feature information of
small targets more effectively. In addition, we introduce the
vision transformer with deformable attention to improve the
feature extraction of irregular targets such as cracks. These
modules will be described in subsequent sections. To increase
the resolution of deep feature maps, the method of nearest
neighbor upsampling is employed.

B. SFB Module

The presence of many small-sized pavement defects in
the RDD2022 dataset presents a significant challenge for
detection. Improving the detection accuracy of small object
defects can indirectly improve the detection accuracy of
the overall dataset. FPN is a commonly used solution
for small object detection problems. FPN improves small
objects’ classification and positioning accuracy by fusing the
position information of shallow feature maps and the semantic
information of deep feature maps. Since the number of pixels
occupied by small targets is limited, small object information
will be lost during the continuous downsampling process, and
the upsampling process in the FPN cannot recover the lost
information. Therefore, we proposed SFB module to enhance
the weight of small target information during the feature fusion
process. The structure of SFB is shown in Fig.8.

SFB is a fully convolutional module whose input is a
shallow feature map ( f 1) and a deep feature map ( f 2). The
sizes of these two feature maps are (B, C1, H , W ) and (B, C2,
H , W ) respectively, where B, H , W are the batch size, the
height and the width of the feature maps, C1 and C2 represent
the number of channels of the two feature maps. The symbol
C in Fig.8 denotes an arithmetic symbol, as shown in Eq.4.

Fc = C

{
Conv( f 1)c=128 − Conv( f 2)c=128

Concat(Conv( f 1), Conv( f 2))
(4)

Fc = {Fc=128, Fc=256} (5)

where c is the number of channels in the feature maps.

C. Deformable Attention Block

The deformable attention block (DAttention) introduces
position bias based on the self-attention mechanism to improve
the model’s ability to detect irregular targets. The structure
diagram is shown in Fig.9. The input feature map was
multiplied by the projection matrix to obtain the query (Q),
and then the deviation of each position is calculated through
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Fig. 8. SFB module.

Fig. 9. Vision transformer with deformable attention.

Q, as shown in Eq.6-9.

Q = x × Wq , K = x̃ × Wk, V = x̃ × Wv (6)
△p = θoffset(Q) (7)

x̃ = φ(x; p + △p) (8)

φ(z; (px , py)) =

∑
(rx ,ry)

g(px , rx )g(py, ry)z[ry, rx , :] (9)

where K , V are the key and value embeddings with offsets,
Wq , Wk , Wv represent the projection matrix, respectively, and
△p indicates the offset of each point learned based on Q.
φ(·; ·) is the bilinear interpolation, and the function g(a, b)

represents the distance ratio between the new point and the
original point, with a value between 0 and 1. The process of
calculating the offset is shown in Fig.10. The H × W × C
feature map goes through several layers, including the
convolution layer, Layer Normalization, and GELU activation
function layer. Finally, the channel dimensions are adjusted to
2 by 1 × 1 convolution, representing the offsets of the feature
points in the horizontal and vertical directions.

After obtaining Q, K , and V , the result can be calculated
by applying the self-attention mechanism using Eq.10-13.

zm
= σ

(
Qm(K̃ m)T /

√
d + φ(B̂; R)

)
Ṽ m (10)

z = concat(z(1), . . . , z(m))Wo (11)

Fig. 10. The process of calculating the offset.

z′

l = MHSA(LN(zl−1)) + zl−1 (12)
zl = MLP(LN(z′

l)) + z′

l (13)

where m denotes the m-th attention head, z(m) indicates
the embedding output from the m-th attention head, σ() is
the softmax function, Wo represents the projection matrix.
Eq.12-13 is the function commonly used in multi-head
attention block.

In DAttention block, learnable offsets are added to the
self-attention mechanism so that the positions of reference
points can be adaptively transformed to better fit the specific
structure of the input data. This flexibility allows the model
to better handle irregularly shaped targets such as curved
cracks. The integration of DAttention allows the model to
show adaptability to geometrical changes in road defects.

D. Loss Function

In FPDDN, cross-entropy loss, distribution focal loss (DFL)
[38], and CIoU loss are used. Cross-entropy loss is mainly
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TABLE I
PLATFORMS FOR TRAINING

used to calculate classification loss, DFL and CIoU loss are
mainly used to calculate regression loss.

Lce = −
1
N

∑
i

M∑
c=1

yic log pic (14)

Lciou = 1 − I oU +
d2

o

c2
o

+ αυ (15)

where Lce is the cross-entropy loss, Lciou denotes the CIoU
loss, M indicates the number of categories. yic equal to 1 if
the true category of sample i is equal to c, and 0 otherwise.
pic denotes the predicted probability that sample i belongs to
category c. do is the distance between the center point of the
ground truth and the prediction box, and co is the diagonal
distance from the smallest outer bounding rectangle.

IV. EXPERIMENTS AND RESULTS

A. Implementation Details

Our hardware and software facilities for training neural
networks are shown in Table I. RDD2022 database was divided
into the training set, validation set, and test set according to
the ratio of 7:2:1. The initial learning rate was set to 0.01,
and the parameters of the model were updated using Stochastic
Gradient Descent (SGD) [39] with the weight decay coefficient
set to 0.0005.

B. Evaluation Metrics

To access the algorithm’s accuracy, we employ standard
metrics from the domain of target detection, such as precision
(P), recall (R), F1, mean average precision (m AP50)
and mean average precision over the range of 0.5 to
0.95 intersection over union (m AP50 − 95). We consider
the number of model parameters, Floating Point Operations
(FLOPs), and the inference time to evaluate the algorithm’s
inference speed. The formulas for the above evaluation metrics
are shown below.

P =
T P

T P + F P
(16)

R =
T P

T P + F N
(17)

F1 =
2 ∗ P ∗ R

P + R
(18)

AP =

∫ 1

0
P(R)dR (19)

AP50 − 95 =
AP50 + AP55 + . . . + AP95

10
(20)

m AP50 =

∑n
1 AP50i

n
(21)

m AP50 − 95 =

∑n
1[AP50 − 95]i

n
(22)

where T P represents the number of samples correctly
predicted as positive categories, F P indicates the number
of samples incorrectly predicted as positive categories, and
F N signifies the number of samples wrongly classified as
negative classes. n denotes the total number of classes, and
m AP50 refers to the mAP calculated at an IoU threshold
of 0.5.

C. Results

1) Comparison of Accuracy: These models were trained
until convergence based on the aforementioned settings.
Table II displays the detection results for each baseline model.
Due to the difficulty of detecting the RDD2022 dataset, only a
relatively small number of studies have been conducted on the
entire dataset. RDD2022 consists of several national pavement
damage sub-datasets, so many scholars focus only on road
diseases in a single country. In this paper, to demonstrate the
performance of FPDDN, all models were trained on the entire
RDD 2022 dataset. Therefore, we did not compare it with the
algorithms proposed by other scholars but chose the algorithms
proposed in the past two years with high accuracy and fast
detection speed.

The SSD [40] is an earlier proposed one-stage detection
algorithm that exhibits the lowest detection accuracy of all
models. Faster R-CNN [41] is a two-stage detection algorithm
that exhibits a detection accuracy comparable to that of YOLO
v8, which was proposed in 2023. Among the YOLO series
models, the YOLO v5s proposed in 2020 has an accuracy
closer to that of the YOLO v6s proposed in 2022. The
YOLO v8 series of algorithms proposed in 2023 are superior
to YOLO v6 and YOLO v5. This is because YOLO v8
integrates the latest and most effective tricks in computer
vision. To better compare each model’s accuracy, we plot
each model’s parameters in Table III. YOLO v8x is the most
accurate model in the YOLO v8 series and has the largest
number of parameters, so its accuracy is higher than the YOLO
v8s and YOLO v8m models. A model’s detection accuracy is
commonly believed to increase with the number of parameters.
YOLO v8x achieves higher accuracy by stacking modules,
resulting in longer inference times.

According to Table II, the Swin Transformer based on self-
attention performs worse than all other compared models.
The Swin Transformer structure may require a large dataset
to achieve good results. Although RDD2022 has more than
40,000 images, it is still smaller than the ImageNet [42] and
MS COCO datasets [43], resulting in lower performance for
the Swin Transformer.

Considering accuracy alone, the FPDDN model outperforms
the YOLO v8x in terms of both mAP50 and mAP50-90,
demonstrating superior detection capabilities for pavement
damage compared to the latest models in the YOLO series.

The FPDDN achieved a mAP50 of 0.610, indicating its high
accuracy in detecting cracks and potholes under a relatively
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TABLE II
DETECTION RESULTS

loose IoU threshold. The mAP50-95 criterion has higher
requirements for the positioning of bounding boxes. Only
with high classification and positioning capabilities under each
threshold can high values be achieved in this criterion.

2) Comparison of Inference Speed: Table III lists the
comparison between FPDDN and other models regarding
parameters and inference speed. Parms denotes the model’s
total number of trainable parameters, including weights and
biases. FLOPs refers to the computational workload, while
Time represents the time required to detect an image.
According to Table III, we can see that YOLO v5s has the
smallest number of parameters and FLOPs, but the inference
speed of YOLO v6s is the fastest. The YOLO v5s, predicated
on using anchor boxes, produces a series of anchor boxes
and then refines the detection boxes by discarding extraneous
boxes via the non-maximum suppression algorithm. This
process results in a significant increase in calculation. Being
an anchor-free algorithm, YOLO v6s only needs to detect
key points of the targets, thereby facilitating a swifter
inference speed. In addition, YOLO v6s has a high degree
of parallelization and can better utilize the GPU to accelerate
inference images. This phenomenon can also be seen from
the comparison between Swin Transformer and YOLO v8x.
The Parms and FLOPs of the Swin Transformer are smaller
than YOLO v8x, but its inference time is longer than YOLO
v8x. This is because the computational complexity of the
self-attention mechanism in the transformer is quadratically
related to the sequence length. The division of an image
into numerous patches results in a significant increase in
computational complexity, which can have a substantial impact
on the inference time, particularly for high-resolution images.
The proposed FPDDN model in this study possesses Parms
that exceeds that of YOLO v8s yet remains less than that
of YOLO v6s, with an inference time of 1.8 milliseconds
per frame. The inference speed of FPDDN is not the fastest
among all models. This is because using the SFB module
and the DAttention makes the model more complex, but they
are critical to improving accuracy. During practical detection
operations, the inference time of 1.8ms per frame is adequate
for real-time detection of pavement detection.

3) Comparison of Detection Results: Fig.11 compares the
detection results of the YOLO v8x and the FPDDN. We can
find that the detection results of FPDDN are similar to YOLO
v8x. We can find that some defects are not labeled but still

TABLE III
NUMBER OF PARAMETERS AND INFERENCE TIME

detected by FPDDN, which can prove that FPDDN has better
detection performance. To further validate the robustness of
FPDDN, we added detection images in environments such as
heavy snow, moist pavement, bright light, and shadows, which
can be seen in Fig.12. We can learn that even though shadows
or moisture may cause the model to misclassify, FPDDN can
still detect most of the defects that can be directly observed
by the human.

Considering the accuracy and speed of the model, FPDDN
can be considered the best model among those compared.
It has only one-fifth of the Parms of YOLO v8x, yet it achieves
better detection accuracy and FPS.

D. Ablation Study

To validate the efficacy of each module, ablation studies
were performed, with the outcomes presented in Table IV.
FPDDN denotes the utilization of the comprehensive model
proposed in this study. FPDDN+C2f denotes the baseline
model without using the proposed module of this study.

1) D2f Module: As can be seen from Table IV, the accuracy
of D2f is similar to that of C2f, which shows that both have
the same ability to extract road disease features. However,
model inference using the D2f module is faster, so this study
proposes the D2f module.

2) SFB Module: It can be found from Table IV that when
the SFB and DAttention are not used, the model has a
low number of parameters and a fast inference speed, but
its accuracy is low, even inferior to the YOLO v5s model.
Incorporating the SFB module significantly enhanced the
model’s performance, most notably in the detection accuracy
of potholes (D40). This is because the SFB module can help
the model improve the detection accuracy of small targets.
Most of the potholes in RDD2022 are small targets. In the field

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on June 27,2024 at 06:53:09 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE IV
ABLATION EXPERIMENT

Fig. 11. Detection results of FPDDN and YOLO V8X.

of object detection, shallow feature maps have rich location
information and also contain a large number of small target
features. However, downsampling gradually leads to the loss
of these small target features. Upsampling deep feature maps
does not recover features of small targets. The SFB module
aims to improve small target detection accuracy by subtracting
the deep feature map from the shallow feature map in one
branch and splicing them in the other.

3) DAttention Module: Furthermore, using DAttention
significantly enhances the mAP50 and mAP50-95 of both
transverse (D10) and longitudinal cracks (D00). Table IV
demonstrates that DAttention elevates the mAP50 of transverse
cracks from 0.53 to 0.578 and increases the mAP50-95 from
0.274 to 0.321. The improvement is also substantial for
longitudinal cracks.

Fig. 12. Detection results in complex environments.

Transverse and longitudinal cracks have extremely irregular
shapes and complex textures. Traditional convolution kernels
cannot flexibly capture the irregular model of cracks, while
the DAttention can adapt the self-attention mechanism to
the geometrical shape of cracks by learning position offsets.
Therefore, it has the most significant improvement in D00 and
D10. In addition, the Transformer’s self-attention mechanism
allows the model to capture global information in a single
layer, while CNN must gradually increase the receptive field
through multiple convolution layers and pooling layers. Cracks
are typically striped targets and a single crack may span the
entire height or width of the image. This can create difficulties
for CNN in extracting global features of the cracks. DAttention
can extract the global information of cracks in a single
layer, so the accuracy of D00 and D10 can be significantly
improved.

4) FPDDN: Table IV shows a significant improvement in
model accuracy when using the complete FPDDN network.
The SFB module can improve the detection accuracy of
small targets, such as potholes. Additionally, the DAttention
is conducive to detecting irregular targets, significantly
improving the accuracy of transverse and longitudinal cracks.
The enhancements in accuracy for the detection of alligator
cracks provided by the two modules are comparable; however,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on June 27,2024 at 06:53:09 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG AND LIU: REAL-TIME PAVEMENT DAMAGE DETECTION WITH DAMAGE SHAPE ADAPTATION 9

their integration elevates the mAP50 for alligator cracks from
0.621 to 0.697, while the mAP50-95 experiences an increase
from 0.33 to 0.38. The observed improvements are chiefly due
to the FPDDN’s backbone network, which excels at extracting
pertinent features of pavement damage. Feature maps derived
from disparate locations are introduced into the SFB module,
which not only emphasizes features of small targets but
also fosters the synthesis of deep and shallow feature maps,
culminating in a comprehensive fusion. Moreover, the self-
attention mechanism within the DAttention captures the global
features of the damage from a singular layer, obviating the
necessity for additional convolution modules and consequently
diminishing the model’s parameters.

In conclusion, integrating the SFB and DAttention modules
can significantly enhance the accuracy of the FPDDN network.
Consequently, FPDDN demonstrates more robust pavement
damage detection capabilities with a smaller parameter set than
YOLO v8x.

V. CONCLUSION

This study proposes the FPDDN model for real-time and
high-accuracy pavement damage detection. This model mainly
consists of convolution modules, deformable Transformer
modules, SFB modules, D2f modules, and multiple detection
branches. Depthwise separable convolutions are also used
to reduce model parameters further. The SFB module in
FPDDN mainly improves small target detection accuracy
by reducing the loss of small target features, which can
significantly improve the model’s ability to detect potholes.
The DAttention mainly adapts the self-attention mechanism
to the geometry of irregular cracks by learning position
offsets, thereby improving the ability to detect transverse and
longitudinal cracks. By comparing with advanced models such
as YOLO v5, YOLO v6, YOLO v8 and Swin Transformer, the
F1 score of FPDDN is 0.601 and the mAP50 is 0.610, which
are both larger than the current advanced object detection
model.

YOLO v8x is currently a representative algorithm in
the field of object detection with advanced performance in
many datasets. However, our proposed FPDDN algorithm
not only has higher detection accuracy than YOLO v8x,
but also achieves four times faster detection speed than it.
In addition, the detection results in complex environments
such as bright light, moist pavement, and shaded environments
further demonstrate the robustness and versatility of FPDDN
in real-world detection environments.

Although the FPDDN model has a good balance between
pavement damage detection accuracy and inference speed,
it still has certain shortcomings. First, FPDDN cannot
quantify the area, length, and other geometric characteristics
of pavement damage and cannot quantitatively evaluate the
quality of road sections. Additionally, damage detection
accuracy is low in complex environments, such as those with
shade or moisture. The above problems can be solved in the
future by establishing a pavement damage database in complex
environments and applying computer vision measurement
technology to FPDDN.
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